Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Comput Chem ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647338

ABSTRACT

Protein-ligand binding prediction typically relies on docking methodologies and associated scoring functions to propose the binding mode of a ligand in a biological target. Significant challenges are associated with this approach, including the flexibility of the protein-ligand system, solvent-mediated interactions, and associated entropy changes. In addition, scoring functions are only weakly accurate due to the short time required for calculating enthalpic and entropic binding interactions. The workflow described here attempts to address these limitations by combining supervised molecular dynamics with dynamical averaging quantum mechanics fragment molecular orbital. This combination significantly increased the ability to predict the experimental binding structure of protein-ligand complexes independent from the starting position of the ligands or the binding site conformation. We found that the predictive power could be enhanced by combining the residence time and interaction energies as descriptors in a novel scoring function named the P-score. This is illustrated using six different protein-ligand targets as case studies.

2.
ChemMedChem ; : e202400025, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581280

ABSTRACT

Identification and assessment of novel targets is essential to combat drug resistance in the treatment of HIV/AIDS. HIV Capsid (HIV-CA), the protein playing a major role in both the early and late stages of the viral life cycle, has emerged as an important target. We have applied an NMR fragment screening platform and identified molecules that bind to the N-terminal domain (NTD) of HIV-CA at a site close to the interface with the C-terminal domain (CTD). Using X-ray crystallography, we have been able to obtain crystal structures to identify the binding mode of these compounds. This allowed for rapid progression of the initial, weak binding, fragment starting points to compounds 37 and 38, which have 19F-pKi values of 5.3 and 5.4 respectively.

3.
Sci Transl Med ; 15(726): eadg8105, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38091410

ABSTRACT

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions of people in the Americas and across the world, leading to considerable morbidity and mortality. Current treatment options, benznidazole (BNZ) and nifurtimox, offer limited efficacy and often lead to adverse side effects because of long treatment durations. Better treatment options are therefore urgently required. Here, we describe a pyrrolopyrimidine series, identified through phenotypic screening, that offers an opportunity to improve on current treatments. In vitro cell-based washout assays demonstrate that compounds in the series are incapable of killing all parasites; however, combining these pyrrolopyrimidines with a subefficacious dose of BNZ can clear all parasites in vitro after 5 days. These findings were replicated in a clinically predictive in vivo model of chronic Chagas disease, where 5 days of treatment with the combination was sufficient to prevent parasite relapse. Comprehensive mechanism of action studies, supported by ligand-structure modeling, show that compounds from this pyrrolopyrimidine series inhibit the Qi active site of T. cruzi cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Knowledge of the molecular target enabled a cascade of assays to be assembled to evaluate selectivity over the human cytochrome b homolog. As a result, a highly selective and efficacious lead compound was identified. The combination of our lead compound with BNZ rapidly clears T. cruzi parasites, both in vitro and in vivo, and shows great potential to overcome key issues associated with currently available treatments.


Subject(s)
Chagas Disease , Parasites , Trypanocidal Agents , Trypanosoma cruzi , Animals , Humans , Cytochromes b , Trypanocidal Agents/adverse effects , Chagas Disease/drug therapy , Chagas Disease/chemically induced , Chagas Disease/parasitology
4.
Sci Transl Med ; 15(726): eadh9902, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38091406

ABSTRACT

New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.


Subject(s)
Leishmaniasis, Visceral , Leishmaniasis , Rats , Animals , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Disease Models, Animal
5.
J Med Chem ; 66(22): 15380-15408, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37948640

ABSTRACT

There is an urgent need for new tuberculosis (TB) treatments, with novel modes of action, to reduce the incidence/mortality of TB and to combat resistance to current treatments. Through both chemical and genetic methodologies, polyketide synthase 13 (Pks13) has been validated as essential for mycobacterial survival and as an attractive target for Mycobacterium tuberculosis growth inhibitors. A benzofuran series of inhibitors that targeted the Pks13 thioesterase domain, failed to progress to preclinical development due to concerns over cardiotoxicity. Herein, we report the identification of a novel oxadiazole series of Pks13 inhibitors, derived from a high-throughput screening hit and structure-guided optimization. This new series binds in the Pks13 thioesterase domain, with a distinct binding mode compared to the benzofuran series. Through iterative rounds of design, assisted by structural information, lead compounds were identified with improved antitubercular potencies (MIC < 1 µM) and in vitro ADMET profiles.


Subject(s)
Benzofurans , Mycobacterium tuberculosis , Polyketide Synthases , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/metabolism , Benzofurans/chemistry , Microbial Sensitivity Tests
7.
J Med Chem ; 66(15): 10413-10431, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37506194

ABSTRACT

There is an urgent need for new treatments for Chagas disease, a parasitic infection which mostly impacts South and Central America. We previously reported on the discovery of GSK3494245/DDD01305143, a preclinical candidate for visceral leishmaniasis which acted through inhibition of the Leishmania proteasome. A related analogue, active against Trypanosoma cruzi, showed suboptimal efficacy in an animal model of Chagas disease, so alternative proteasome inhibitors were investigated. Screening a library of phenotypically active analogues against the T. cruzi proteasome identified an active, selective pyridazinone, the development of which is described herein. We obtained a cryo-EM co-structure of proteasome and a key inhibitor and used this to drive optimization of the compounds. Alongside this, optimization of the absorption, distribution, metabolism, and excretion (ADME) properties afforded a suitable compound for mouse efficacy studies. The outcome of these studies is discussed, alongside future plans to further understand the series and its potential to deliver a new treatment for Chagas disease.


Subject(s)
Chagas Disease , Leishmaniasis, Visceral , Trypanocidal Agents , Trypanosoma cruzi , Mice , Animals , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Proteasome Endopeptidase Complex , Chagas Disease/drug therapy , Chagas Disease/parasitology , Leishmaniasis, Visceral/drug therapy , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanocidal Agents/chemistry
8.
ACS Omega ; 8(17): 15083-15098, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37151542

ABSTRACT

The optimization of compounds' binding affinity for a biological target is a crucial aspect of the drug development process. Being able to accurately predict binding energies in advance of synthesizing compounds would have a massive impact on the speed of the drug discovery process. The ideal binding affinity prediction method should combine accuracy, reliability, and speed. In this paper, we present SophosQM, a quantum mechanics (QM)-based approach, which can accurately predict the binding affinities of compounds to proteins. The binding affinity predictive models generated by SophosQM are based on the fragment molecular orbital (FMO) method to estimate the enthalpic component of the binding free energy, and a macroscopic descriptor, clog P, is used as an approximation of the entropic component. The affinity prediction is performed using multilinear regression, fitting the experimental values against the FMO-computed enthalpic term and clog P. The quality of the prediction can be assessed in terms of the correlation coefficient between experimental and predicted values. In this work, the method's reliability and accuracy are exemplified by applying SophosQM to 70 compounds binding to six different targets of pharmaceutical relevance. Overall, the results show a very satisfactory performance with a global correlation coefficient in the order of 0.9. Our predictions also show a satisfactory performance compared to data based on free energy perturbation. Finally, SophosQM can also be applied in high-throughput mode by using semiempirical QM methods to evaluate large portions of chemical space, while retaining a good level of accuracy, but decreasing the computing time to just a few seconds per compound.

9.
ACS Omega ; 8(14): 12787-12804, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37065080

ABSTRACT

There is an urgent need for the development of new therapeutics with novel modes of action to target Gram-negative bacterial infections, due to resistance to current drugs. Previously, FabA, an enzyme in the bacterial type II fatty acid biosynthesis pathway, was identified as a potential drug target in Pseudomonas aeruginosa, a Gram-negative bacteria of significant clinical concern. A chemical starting point was also identified. There is a cysteine, Cys15, in the active site of FabA, adjacent to where this compound binds. This paper describes the preparation of analogues containing an electrophilic warhead with the aim of covalent inhibition of the target. A wide variety of analogues were successfully prepared. Unfortunately, these analogues did not increase inhibition, which may be due to a loop within the enzyme partially occluding access to the cysteine.

10.
Nat Commun ; 13(1): 5992, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36220877

ABSTRACT

Tuberculosis is a major global cause of both mortality and financial burden mainly in low and middle-income countries. Given the significant and ongoing rise of drug-resistant strains of Mycobacterium tuberculosis within the clinical setting, there is an urgent need for the development of new, safe and effective treatments. Here the development of a drug-like series based on a fused dihydropyrrolidino-pyrimidine scaffold is described. The series has been developed against M. tuberculosis lysyl-tRNA synthetase (LysRS) and cellular studies support this mechanism of action. DDD02049209, the lead compound, is efficacious in mouse models of acute and chronic tuberculosis and has suitable physicochemical, pharmacokinetic properties and an in vitro safety profile that supports further development. Importantly, preliminary analysis using clinical resistant strains shows no pre-existing clinical resistance towards this scaffold.


Subject(s)
Lysine-tRNA Ligase , Mycobacterium tuberculosis , Tuberculosis , Animals , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/genetics , Lysine-tRNA Ligase/pharmacology , Mice , Mycobacterium tuberculosis/genetics , Tuberculosis/drug therapy
11.
J Med Chem ; 65(7): 5606-5624, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35303411

ABSTRACT

African animal trypanosomiasis or nagana, caused principally by infection of the protozoan parasites Trypanosoma congolense and Trypanosoma vivax, is a major problem in cattle and other livestocks in sub-Saharan Africa. Current treatments are threatened by the emergence of drug resistance and there is an urgent need for new, effective drugs. Here, we report the repositioning of a compound series initially developed for the treatment of human African trypanosomiasis. A medicinal chemistry program, focused on deriving more soluble analogues, led to development of a lead compound capable of curing cattle infected with both T. congolense and T. vivax via intravenous dosing. Further optimization has the potential to yield a single-dose intramuscular treatment for this disease. Comprehensive mode of action studies revealed that the molecular target of this promising compound and related analogues is the cyclin-dependent kinase CRK12.


Subject(s)
Trypanosoma congolense , Trypanosomiasis, African , Animals , Cattle , Cyclin-Dependent Kinases , Drug Repositioning , Trypanosoma vivax , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/veterinary
12.
Antimicrob Agents Chemother ; 66(1): e0153521, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34606338

ABSTRACT

Phenotypic screening identified an arylsulfonamide compound with activity against Trypanosoma cruzi, the causative agent of Chagas' disease. Comprehensive mode of action studies revealed that this compound primarily targets the T. cruzi proteasome, binding at the interface between ß4 and ß5 subunits that catalyze chymotrypsin-like activity. A mutation in the ß5 subunit of the proteasome was associated with resistance to compound 1, while overexpression of this mutated subunit also reduced susceptibility to compound 1. Further genetically engineered and in vitro-selected clones resistant to proteasome inhibitors known to bind at the ß4/ß5 interface were cross-resistant to compound 1. Ubiquitinated proteins were additionally found to accumulate in compound 1-treated epimastigotes. Finally, thermal proteome profiling identified malic enzyme as a secondary target of compound 1, although malic enzyme inhibition was not found to drive potency. These studies identify a novel pharmacophore capable of inhibiting the T. cruzi proteasome that may be exploitable for anti-chagasic drug discovery.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Chagas Disease/drug therapy , Drug Discovery , Humans , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Trypanosoma cruzi/chemistry
13.
J Med Chem ; 65(1): 409-423, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34910486

ABSTRACT

With increasing drug resistance in tuberculosis (TB) patient populations, there is an urgent need for new drugs. Ideally, new agents should work through novel targets so that they are unencumbered by preexisting clinical resistance to current treatments. Benzofuran 1 was identified as a potential lead for TB inhibiting a novel target, the thioesterase domain of Pks13. Although, having promising activity against Mycobacterium tuberculosis, its main liability was inhibition of the hERG cardiac ion channel. This article describes the optimization of the series toward a preclinical candidate. Despite improvements in the hERG liability in vitro, when new compounds were assessed in ex vivo cardiotoxicity models, they still induced cardiac irregularities. Further series development was stopped because of concerns around an insufficient safety window. However, the demonstration of in vivo activity for multiple series members further validates Pks13 as an attractive novel target for antitubercular drugs and supports development of alternative chemotypes.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Benzofurans/pharmacology , Palmitoyl-CoA Hydrolase/antagonists & inhibitors , Piperidines/pharmacology , Polyketide Synthases/antagonists & inhibitors , Benzofurans/chemical synthesis , Cardiotoxicity , Drug Discovery , ERG1 Potassium Channel , Heart/drug effects , Humans , Microbial Sensitivity Tests , Models, Molecular , Mycobacterium tuberculosis/drug effects , Piperidines/chemical synthesis , Structure-Activity Relationship
14.
J Med Chem ; 64(21): 16159-16176, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34711050

ABSTRACT

Visceral leishmaniasis (VL) is a parasitic disease endemic across multiple regions of the world and is fatal if untreated. Current therapies are unsuitable, and there is an urgent need for safe, short-course, and low-cost oral treatments to combat this neglected disease. The benzoxaborole chemotype has previously delivered clinical candidates for the treatment of other parasitic diseases. Here, we describe the development and optimization of this series, leading to the identification of compounds with potent in vitro and in vivo antileishmanial activity. The lead compound (DNDI-6148) combines impressive in vivo efficacy (>98% reduction in parasite burden) with pharmaceutical properties suitable for onward development and an acceptable safety profile. Detailed mode of action studies confirm that DNDI-6148 acts principally through the inhibition of Leishmania cleavage and polyadenylation specificity factor (CPSF3) endonuclease. As a result of these studies and its promising profile, DNDI-6148 has been declared a preclinical candidate for the treatment of VL.


Subject(s)
Antiprotozoal Agents/therapeutic use , Benzoxazoles/therapeutic use , Boron Compounds/therapeutic use , Leishmaniasis, Visceral/drug therapy , Pyridines/therapeutic use , Animals , Antiprotozoal Agents/chemistry , Benzoxazoles/chemistry , Boron Compounds/chemistry , Cricetinae , Disease Models, Animal , Dogs , Humans , Mice , Pyridines/chemistry , Structure-Activity Relationship
15.
J Comput Aided Mol Des ; 35(10): 1025-1036, 2021 10.
Article in English | MEDLINE | ID: mdl-34458939

ABSTRACT

Water molecules play a crucial role in protein-ligand binding, and many tools exist that aim to predict the position and relative energies of these important, but challenging participants of biomolecular recognition. The available tools are, in general, capable of predicting the location of water molecules. However, predicting the effects of their displacement is still very challenging. In this work, a linear-scaling quantum mechanics-based approach was used to assess water network energetics and the changes in network stability upon ligand structural modifications. This approach offers a valuable way to improve understanding of SAR data and help guide compound design.


Subject(s)
Proteins/metabolism , Thermodynamics , Water/chemistry , Binding Sites , Ligands , Models, Molecular , Protein Binding , Proteins/chemistry , Water/metabolism
16.
J Med Chem ; 64(9): 5905-5930, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33904304

ABSTRACT

There is an urgent need for new treatments for visceral leishmaniasis (VL), a parasitic infection which impacts heavily large areas of East Africa, Asia, and South America. We previously reported on the discovery of GSK3494245/DDD01305143 (1) as a preclinical candidate for VL and, herein, we report on the medicinal chemistry program that led to its identification. A hit from a phenotypic screen was optimized to give a compound with in vivo efficacy, which was hampered by poor solubility and genotoxicity. The work on the original scaffold failed to lead to developable compounds, so an extensive scaffold-hopping exercise involving medicinal chemistry design, in silico profiling, and subsequent synthesis was utilized, leading to the preclinical candidate. The compound was shown to act via proteasome inhibition, and we report on the modeling of different scaffolds into a cryo-EM structure and the impact this has on our understanding of the series' structure-activity relationships.


Subject(s)
Drug Design , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Protozoan Proteins/metabolism , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/metabolism , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Binding Sites , Cell Line , Drug Evaluation, Preclinical , Half-Life , Humans , Leishmania donovani/drug effects , Leishmania donovani/metabolism , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Mice , Molecular Dynamics Simulation , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/metabolism , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Protein Subunits/chemistry , Protein Subunits/metabolism , Protozoan Proteins/chemistry , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Solubility , Structure-Activity Relationship
17.
Cell Chem Biol ; 28(5): 711-721.e8, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33691122

ABSTRACT

Phenotypic screening identified a benzothiophene compound with activity against Leishmania donovani, the causative agent of visceral leishmaniasis. Using multiple orthogonal approaches, oxidosqualene cyclase (OSC), a key enzyme of sterol biosynthesis, was identified as the target of this racemic compound and its enantiomers. Whole genome sequencing and screening of a genome-wide overexpression library confirmed that OSC gene amplification is associated with resistance to compound 1. Introduction of an ectopic copy of the OSC gene into wild-type cells reduced susceptibility to these compounds confirming the role of this enzyme in resistance. Biochemical analyses demonstrated the accumulation of the substrate of OSC and depletion of its product in compound (S)-1-treated-promastigotes and cell-free membrane preparations, respectively. Thermal proteome profiling confirmed that compound (S)-1 binds directly to OSC. Finally, modeling and docking studies identified key interactions between compound (S)-1 and the LdOSC active site. Strategies to improve the potency for this promising anti-leishmanial are proposed.


Subject(s)
Antiprotozoal Agents/pharmacology , Enzyme Inhibitors/pharmacology , Intramolecular Transferases/antagonists & inhibitors , Leishmania donovani/drug effects , Piperidines/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Intramolecular Transferases/metabolism , Leishmania donovani/enzymology , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Piperidines/chemical synthesis , Piperidines/chemistry
18.
ACS Omega ; 6(3): 2284-2311, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33521468

ABSTRACT

With the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, there is a pressing need for new oral drugs with novel mechanisms of action. A number of scaffolds with potent anti-tubercular in vitro activity have been identified from phenotypic screening that appear to target MmpL3. However, the scaffolds are typically lipophilic, which facilitates partitioning into hydrophobic membranes, and several contain basic amine groups. Highly lipophilic basic amines are typically cytotoxic against mammalian cell lines and have associated off-target risks, such as inhibition of human ether-à-go-go related gene (hERG) and IKr potassium current modulation. The spirocycle compound 3 was reported to target MmpL3 and displayed promising efficacy in a murine model of acute tuberculosis (TB) infection. However, this highly lipophilic monobasic amine was cytotoxic and inhibited the hERG ion channel. Herein, the related spirocycles (1-2) are described, which were identified following phenotypic screening of the Eli Lilly corporate library against M. tuberculosis. The novel N-alkylated pyrazole portion offered improved physicochemical properties, and optimization led to identification of a zwitterion series, exemplified by lead 29, with decreased HepG2 cytotoxicity as well as limited hERG ion channel inhibition. Strains with mutations in MmpL3 were resistant to 29, and under replicating conditions, 29 demonstrated bactericidal activity against M. tuberculosis. Unfortunately, compound 29 had no efficacy in an acute model of TB infection; this was most likely due to the in vivo exposure remaining above the minimal inhibitory concentration for only a limited time.

19.
PLoS Negl Trop Dis ; 14(7): e0008458, 2020 07.
Article in English | MEDLINE | ID: mdl-32644992

ABSTRACT

Defining mode of action is vital for both developing new drugs and predicting potential resistance mechanisms. Sensitivity of African trypanosomes to pentamidine and melarsoprol is predominantly mediated by aquaglyceroporin 2 (TbAQP2), a channel associated with water/glycerol transport. TbAQP2 is expressed at the flagellar pocket membrane and chimerisation with TbAQP3 renders parasites resistant to both drugs. Two models for how TbAQP2 mediates pentamidine sensitivity have emerged; that TbAQP2 mediates pentamidine translocation across the plasma membrane or via binding to TbAQP2, with subsequent endocytosis and presumably transport across the endosomal/lysosomal membrane, but as trafficking and regulation of TbAQPs is uncharacterised this remains unresolved. We demonstrate that TbAQP2 is organised as a high order complex, is ubiquitylated and is transported to the lysosome. Unexpectedly, mutation of potential ubiquitin conjugation sites, i.e. cytoplasmic-oriented lysine residues, reduced folding and tetramerization efficiency and triggered ER retention. Moreover, TbAQP2/TbAQP3 chimerisation, as observed in pentamidine-resistant parasites, also leads to impaired oligomerisation, mislocalisation and increased turnover. These data suggest that TbAQP2 stability is highly sensitive to mutation and that instability contributes towards the emergence of drug resistance.


Subject(s)
Aquaglyceroporins/metabolism , Drug Resistance , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei , Trypanosomiasis, African/parasitology , Amino Acid Sequence , Animals , Aquaglyceroporins/chemistry , Protein Stability
20.
ACS Infect Dis ; 6(3): 515-528, 2020 03 13.
Article in English | MEDLINE | ID: mdl-31967783

ABSTRACT

Available treatments for Chagas' disease and visceral leishmaniasis are inadequate, and there is a pressing need for new therapeutics. Drug discovery efforts for both diseases principally rely upon phenotypic screening. However, the optimization of phenotypically active compounds is hindered by a lack of information regarding their molecular target(s). To combat this issue we initiate target deconvolution studies at an early stage. Here, we describe comprehensive genetic and biochemical studies to determine the targets of three unrelated phenotypically active compounds. All three structurally diverse compounds target the Qi active-site of cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Our studies go on to identify the Qi site as a promiscuous drug target in Leishmania donovani and Trypanosoma cruzi with a propensity to rapidly mutate. Strategies to rapidly identify compounds acting via this mechanism are discussed to ensure that drug discovery portfolios are not overwhelmed with inhibitors of a single target.


Subject(s)
Antiparasitic Agents/pharmacology , Cytochromes b/antagonists & inhibitors , Drug Discovery , Leishmania donovani/drug effects , Leishmania donovani/genetics , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/genetics , Antiparasitic Agents/chemistry , Antiparasitic Agents/isolation & purification , Chagas Disease/drug therapy , Cytochromes b/genetics , High-Throughput Screening Assays , Humans , Leishmaniasis, Visceral/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...